Files
cloud-removal/main.py
neulus 12a165e461 test
2025-09-29 22:51:54 +09:00

116 lines
3.2 KiB
Python

import os
import torch
import torch.optim as optim
from tqdm import tqdm
import wandb
from src.benchmark import benchmark
from src.dataset.cuhk_cr1 import get_dataset
from src.dataset.preprocess import denormalize
from src.model.utransformer import UTransformer
from src.rf import RF
device = "cuda:3"
model = UTransformer.from_pretrained_backbone(
"facebook/dinov3-vits16-pretrain-lvd1689m"
).to(device)
rf = RF(model)
optimizer = optim.AdamW(model.parameters(), lr=5e-4)
train_dataset, test_dataset = get_dataset()
wandb.init(project="cloud-removal-kmu")
if not (wandb.run and wandb.run.name):
raise Exception("nope")
os.makedirs(f"artifact/{wandb.run.name}", exist_ok=True)
batch_size = 32
for epoch in range(100):
lossbin = {i: 0 for i in range(10)}
losscnt = {i: 1e-6 for i in range(10)}
train_dataset = train_dataset.shuffle(seed=epoch)
for i in tqdm(
range(0, len(train_dataset), batch_size), desc=f"Epoch {epoch + 1}/100"
):
batch = train_dataset[i : i + batch_size]
x0 = batch["x0"].to(device)
x1 = batch["x1"].to(device)
optimizer.zero_grad()
loss, blsct = rf.forward(x0, x1)
loss.backward()
optimizer.step()
wandb.log({"loss": loss.item()})
for t, lss in blsct:
bin_idx = min(int(t * 10), 9)
lossbin[bin_idx] += lss
losscnt[bin_idx] += 1
epoch_metrics = {f"lossbin_{i}": lossbin[i] / losscnt[i] for i in range(10)}
epoch_metrics["epoch"] = epoch
wandb.log(epoch_metrics)
if (epoch + 1) % 10 == 0:
# bench
rf.model.eval()
psnr_sum = 0
ssim_sum = 0
lpips_sum = 0
count = 0
with torch.no_grad():
for i in tqdm(
range(0, len(test_dataset), batch_size),
desc=f"Benchmark {epoch + 1}/100",
):
batch = test_dataset[i : i + batch_size]
images = rf.sample(batch["x0"].to(device))
image = denormalize(images[-1]).clamp(0, 1) * 255
original = denormalize(batch["x1"]).clamp(0, 1) * 255
psnr, ssim, lpips = benchmark(image.cpu(), original.cpu())
psnr_sum += psnr.sum().item()
ssim_sum += ssim.sum().item()
lpips_sum += lpips.sum().item()
count += image.shape[0]
avg_psnr = psnr_sum / count
avg_ssim = ssim_sum / count
avg_lpips = lpips_sum / count
wandb.log(
{
"eval/psnr": avg_psnr,
"eval/ssim": avg_ssim,
"eval/lpips": avg_lpips,
"epoch": epoch + 1,
}
)
rf.model.train()
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
f"artifact/{wandb.run.name}/checkpoint_epoch_{epoch + 1}.pt",
)
torch.save(
{
"epoch": 100,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
f"artifact/{wandb.run.name}/checkpoint_final.pt",
)
wandb.finish()