Compare commits

...

2 Commits

Author SHA1 Message Date
neulus
8966cafb8f resuming 2025-09-30 10:27:41 +09:00
neulus
0ccf1ff42d another approach for final decoder 2025-09-29 23:20:27 +09:00
15 changed files with 134 additions and 43 deletions

60
main.py
View File

@@ -11,54 +11,72 @@ from src.dataset.preprocess import denormalize
from src.model.utransformer import UTransformer
from src.rf import RF
device = "cuda:3"
device = "cuda:0"
model = UTransformer.from_pretrained_backbone(
"facebook/dinov3-vits16-pretrain-lvd1689m"
"facebook/dinov3-vitl16-pretrain-sat493m"
).to(device)
rf = RF(model)
optimizer = optim.AdamW(model.parameters(), lr=5e-4)
optimizer = optim.AdamW(model.parameters(), lr=1e-4)
train_dataset, test_dataset = get_dataset()
wandb.init(project="cloud-removal-kmu")
wandb.init(project="cloud-removal-kmu", id="icy-field-11", resume="allow")
if not (wandb.run and wandb.run.name):
raise Exception("nope")
os.makedirs(f"artifact/{wandb.run.name}", exist_ok=True)
batch_size = 32
for epoch in range(100):
start_epoch = 0
checkpoint_path = f"artifact/{wandb.run.name}/checkpoint_final.pt"
if os.path.exists(checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location=device)
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
start_epoch = checkpoint["epoch"] + 1
batch_size = 4
accumulation_steps = 4
total_epoch = 1000
for epoch in range(start_epoch, total_epoch):
lossbin = {i: 0 for i in range(10)}
losscnt = {i: 1e-6 for i in range(10)}
train_dataset = train_dataset.shuffle(seed=epoch)
for i in tqdm(
range(0, len(train_dataset), batch_size), desc=f"Epoch {epoch + 1}/100"
range(0, len(train_dataset), batch_size),
desc=f"Epoch {epoch + 1}/{total_epoch}",
):
batch = train_dataset[i : i + batch_size]
x0 = batch["x0"].to(device)
x1 = batch["x1"].to(device)
optimizer.zero_grad()
loss, blsct = rf.forward(x0, x1)
loss = loss / accumulation_steps
loss.backward()
optimizer.step()
wandb.log({"loss": loss.item()})
if (i // batch_size + 1) % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
wandb.log({"train/loss": loss.item() * accumulation_steps})
for t, lss in blsct:
bin_idx = min(int(t * 10), 9)
lossbin[bin_idx] += lss
losscnt[bin_idx] += 1
epoch_metrics = {f"lossbin_{i}": lossbin[i] / losscnt[i] for i in range(10)}
if (len(range(0, len(train_dataset), batch_size)) % accumulation_steps) != 0:
optimizer.step()
optimizer.zero_grad()
epoch_metrics = {f"lossbin/lossbin_{i}": lossbin[i] / losscnt[i] for i in range(10)}
epoch_metrics["epoch"] = epoch
wandb.log(epoch_metrics)
if (epoch + 1) % 10 == 0:
# bench
rf.model.eval()
psnr_sum = 0
ssim_sum = 0
@@ -68,12 +86,12 @@ for epoch in range(100):
with torch.no_grad():
for i in tqdm(
range(0, len(test_dataset), batch_size),
desc=f"Benchmark {epoch + 1}/100",
desc=f"Benchmark {epoch + 1}/{total_epoch}",
):
batch = test_dataset[i : i + batch_size]
images = rf.sample(batch["x0"].to(device))
image = denormalize(images[-1]).clamp(0, 1) * 255
original = denormalize(batch["x1"]).clamp(0, 1) * 255
image = denormalize(images[-1]).clamp(0, 1)
original = denormalize(batch["x1"]).clamp(0, 1)
psnr, ssim, lpips = benchmark(image.cpu(), original.cpu())
psnr_sum += psnr.sum().item()
@@ -92,7 +110,6 @@ for epoch in range(100):
"epoch": epoch + 1,
}
)
rf.model.train()
torch.save(
@@ -104,9 +121,18 @@ for epoch in range(100):
f"artifact/{wandb.run.name}/checkpoint_epoch_{epoch + 1}.pt",
)
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
checkpoint_path,
)
torch.save(
{
"epoch": 100,
"epoch": epoch, # type: ignore
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},

View File

@@ -41,13 +41,13 @@ with torch.no_grad():
batch = test_dataset[i : i + batch_size]
images = rf.sample(batch["x0"].to(device))
image = denormalize(images[-1]).clamp(0, 1) * 255
original = denormalize(batch["x1"]).clamp(0, 1) * 255
image = denormalize(images[-1]).clamp(0, 1)
original = denormalize(batch["x1"]).clamp(0, 1)
if saved_count < max_save:
for j in range(min(image.shape[0], max_save - saved_count)):
save_image(image[j] / 255, f"{save_dir}/pred_{saved_count}.png")
save_image(original[j] / 255, f"{save_dir}/gt_{saved_count}.png")
save_image(image[j], f"{save_dir}/pred_{saved_count}.png")
save_image(original[j], f"{save_dir}/gt_{saved_count}.png")
save_image(
denormalize(batch["x0"][j]).clamp(0, 1),
f"{save_dir}/input_{saved_count}.png",

View File

@@ -4,9 +4,11 @@ from torchmetrics.image import (
StructuralSimilarityIndexMeasure,
)
psnr = PeakSignalNoiseRatio(255.0, reduction="none")
ssim = StructuralSimilarityIndexMeasure(reduction="none")
lpips = LearnedPerceptualImagePatchSimilarity(net_type="alex", reduction="none")
psnr = PeakSignalNoiseRatio(1.0, reduction="none")
ssim = StructuralSimilarityIndexMeasure(data_range=1.0, reduction="none")
lpips = LearnedPerceptualImagePatchSimilarity(
net_type="alex", reduction="none", normalize=True
)
def benchmark(image1, image2):

View File

@@ -2,19 +2,19 @@ import torch
from torchvision.transforms import v2
# note that its LVD-1689M (not SAT)
# note that its SAT
def make_transform(resize_size: int = 256):
to_tensor = v2.ToImage()
resize = v2.Resize((resize_size, resize_size), antialias=True)
to_float = v2.ToDtype(torch.float32, scale=True)
normalize = v2.Normalize(
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
mean=(0.430, 0.411, 0.296),
std=(0.213, 0.156, 0.143),
)
return v2.Compose([to_tensor, resize, to_float, normalize])
def denormalize(tensor):
mean = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1).to(tensor.device)
std = torch.tensor([0.229, 0.224, 0.225]).view(3, 1, 1).to(tensor.device)
mean = torch.tensor([0.430, 0.411, 0.296]).view(3, 1, 1).to(tensor.device)
std = torch.tensor([0.213, 0.156, 0.143]).view(3, 1, 1).to(tensor.device)
return tensor * std + mean

View File

@@ -137,40 +137,103 @@ class DinoConditionedLayer(DINOv3ViTLayer):
return hidden_states
# class DinoV3ViTDecoder(nn.Module):
# def __init__(self, config: DINOv3ViTConfig):
# super().__init__()
# self.config = config
# self.num_channels_out = config.num_channels
# self.projection = nn.Linear(
# config.hidden_size,
# self.num_channels_out * config.patch_size * config.patch_size,
# bias=True,
# )
# def forward(self, x: torch.Tensor, image_size: tuple[int, int]) -> torch.Tensor:
# batch_size = x.shape[0]
# num_special_tokens = 1 + self.config.num_register_tokens
# patch_tokens = x[:, num_special_tokens:, :]
# projected_tokens = self.projection(patch_tokens)
# p = self.config.patch_size
# c = self.num_channels_out
# h_grid = image_size[0] // p
# w_grid = image_size[1] // p
# assert patch_tokens.shape[1] == h_grid * w_grid, (
# "Number of patches does not match image size."
# )
# x_reshaped = projected_tokens.reshape(batch_size, h_grid, w_grid, p, p, c)
# x_permuted = torch.einsum("nhwpqc->nchpwq", x_reshaped)
# reconstructed_image = x_permuted.reshape(batch_size, c, h_grid * p, w_grid * p)
# return reconstructed_image
# lets try conv decoder
class DinoV3ViTDecoder(nn.Module):
def __init__(self, config: DINOv3ViTConfig):
super().__init__()
self.config = config
self.num_channels_out = config.num_channels
hidden_dim = config.hidden_size
patch_size = config.patch_size
self.projection = nn.Linear(
config.hidden_size,
self.num_channels_out * config.patch_size * config.patch_size,
bias=True,
self.projection = nn.Linear(hidden_dim, hidden_dim)
if patch_size == 14:
final_upsample = 7
elif patch_size == 16:
final_upsample = 8
elif patch_size == 8:
final_upsample = 4
else:
raise ValueError("invalid")
self.decoder = nn.Sequential(
nn.Conv2d(hidden_dim, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False),
nn.Conv2d(256, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Upsample(
scale_factor=final_upsample, mode="bilinear", align_corners=False
),
nn.Conv2d(128, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 32, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(32, self.num_channels_out, kernel_size=1),
)
def forward(self, x: torch.Tensor, image_size: tuple[int, int]) -> torch.Tensor:
batch_size = x.shape[0]
num_special_tokens = 1 + self.config.num_register_tokens
patch_tokens = x[:, num_special_tokens:, :]
patch_tokens = x[:, 1 + self.config.num_register_tokens :, :]
projected_tokens = self.projection(patch_tokens)
p = self.config.patch_size
c = self.num_channels_out
h_grid = image_size[0] // p
w_grid = image_size[1] // p
assert patch_tokens.shape[1] == h_grid * w_grid, (
"Number of patches does not match image size."
assert patch_tokens.shape[1] == h_grid * w_grid
x_spatial = projected_tokens.reshape(
batch_size, h_grid, w_grid, self.config.hidden_size
)
x_reshaped = projected_tokens.reshape(batch_size, h_grid, w_grid, p, p, c)
x_permuted = torch.einsum("nhwpqc->nchpwq", x_reshaped)
reconstructed_image = x_permuted.reshape(batch_size, c, h_grid * p, w_grid * p)
x_spatial = x_spatial.permute(0, 3, 1, 2)
reconstructed_image = self.decoder(x_spatial)
return reconstructed_image

Binary file not shown.

Before

Width:  |  Height:  |  Size: 489 KiB

After

Width:  |  Height:  |  Size: 489 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 537 KiB

After

Width:  |  Height:  |  Size: 537 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 482 KiB

After

Width:  |  Height:  |  Size: 482 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 477 KiB

After

Width:  |  Height:  |  Size: 477 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 508 KiB

After

Width:  |  Height:  |  Size: 508 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 502 KiB

After

Width:  |  Height:  |  Size: 502 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 541 KiB

After

Width:  |  Height:  |  Size: 541 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 551 KiB

After

Width:  |  Height:  |  Size: 551 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 541 KiB

After

Width:  |  Height:  |  Size: 541 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 488 KiB

After

Width:  |  Height:  |  Size: 488 KiB