resuming
This commit is contained in:
55
main.py
55
main.py
@@ -11,54 +11,72 @@ from src.dataset.preprocess import denormalize
|
||||
from src.model.utransformer import UTransformer
|
||||
from src.rf import RF
|
||||
|
||||
device = "cuda:3"
|
||||
device = "cuda:0"
|
||||
|
||||
model = UTransformer.from_pretrained_backbone(
|
||||
"facebook/dinov3-vits16-pretrain-lvd1689m"
|
||||
"facebook/dinov3-vitl16-pretrain-sat493m"
|
||||
).to(device)
|
||||
rf = RF(model)
|
||||
optimizer = optim.AdamW(model.parameters(), lr=5e-4)
|
||||
optimizer = optim.AdamW(model.parameters(), lr=1e-4)
|
||||
|
||||
train_dataset, test_dataset = get_dataset()
|
||||
|
||||
wandb.init(project="cloud-removal-kmu")
|
||||
wandb.init(project="cloud-removal-kmu", id="icy-field-11", resume="allow")
|
||||
|
||||
if not (wandb.run and wandb.run.name):
|
||||
raise Exception("nope")
|
||||
|
||||
os.makedirs(f"artifact/{wandb.run.name}", exist_ok=True)
|
||||
|
||||
batch_size = 32
|
||||
for epoch in range(100):
|
||||
start_epoch = 0
|
||||
checkpoint_path = f"artifact/{wandb.run.name}/checkpoint_final.pt"
|
||||
if os.path.exists(checkpoint_path):
|
||||
checkpoint = torch.load(checkpoint_path, map_location=device)
|
||||
model.load_state_dict(checkpoint["model_state_dict"])
|
||||
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
|
||||
start_epoch = checkpoint["epoch"] + 1
|
||||
|
||||
batch_size = 4
|
||||
accumulation_steps = 4
|
||||
total_epoch = 1000
|
||||
for epoch in range(start_epoch, total_epoch):
|
||||
lossbin = {i: 0 for i in range(10)}
|
||||
losscnt = {i: 1e-6 for i in range(10)}
|
||||
|
||||
train_dataset = train_dataset.shuffle(seed=epoch)
|
||||
|
||||
for i in tqdm(
|
||||
range(0, len(train_dataset), batch_size), desc=f"Epoch {epoch + 1}/100"
|
||||
range(0, len(train_dataset), batch_size),
|
||||
desc=f"Epoch {epoch + 1}/{total_epoch}",
|
||||
):
|
||||
batch = train_dataset[i : i + batch_size]
|
||||
x0 = batch["x0"].to(device)
|
||||
x1 = batch["x1"].to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss, blsct = rf.forward(x0, x1)
|
||||
loss = loss / accumulation_steps
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
wandb.log({"loss": loss.item()})
|
||||
|
||||
if (i // batch_size + 1) % accumulation_steps == 0:
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
wandb.log({"train/loss": loss.item() * accumulation_steps})
|
||||
|
||||
for t, lss in blsct:
|
||||
bin_idx = min(int(t * 10), 9)
|
||||
lossbin[bin_idx] += lss
|
||||
losscnt[bin_idx] += 1
|
||||
|
||||
epoch_metrics = {f"lossbin_{i}": lossbin[i] / losscnt[i] for i in range(10)}
|
||||
if (len(range(0, len(train_dataset), batch_size)) % accumulation_steps) != 0:
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
epoch_metrics = {f"lossbin/lossbin_{i}": lossbin[i] / losscnt[i] for i in range(10)}
|
||||
epoch_metrics["epoch"] = epoch
|
||||
wandb.log(epoch_metrics)
|
||||
|
||||
if (epoch + 1) % 10 == 0:
|
||||
# bench
|
||||
rf.model.eval()
|
||||
psnr_sum = 0
|
||||
ssim_sum = 0
|
||||
@@ -68,7 +86,7 @@ for epoch in range(100):
|
||||
with torch.no_grad():
|
||||
for i in tqdm(
|
||||
range(0, len(test_dataset), batch_size),
|
||||
desc=f"Benchmark {epoch + 1}/100",
|
||||
desc=f"Benchmark {epoch + 1}/{total_epoch}",
|
||||
):
|
||||
batch = test_dataset[i : i + batch_size]
|
||||
images = rf.sample(batch["x0"].to(device))
|
||||
@@ -103,9 +121,18 @@ for epoch in range(100):
|
||||
f"artifact/{wandb.run.name}/checkpoint_epoch_{epoch + 1}.pt",
|
||||
)
|
||||
|
||||
torch.save(
|
||||
{
|
||||
"epoch": epoch,
|
||||
"model_state_dict": model.state_dict(),
|
||||
"optimizer_state_dict": optimizer.state_dict(),
|
||||
},
|
||||
checkpoint_path,
|
||||
)
|
||||
|
||||
torch.save(
|
||||
{
|
||||
"epoch": 100,
|
||||
"epoch": epoch, # type: ignore
|
||||
"model_state_dict": model.state_dict(),
|
||||
"optimizer_state_dict": optimizer.state_dict(),
|
||||
},
|
||||
|
||||
@@ -2,19 +2,19 @@ import torch
|
||||
from torchvision.transforms import v2
|
||||
|
||||
|
||||
# note that its LVD-1689M (not SAT)
|
||||
# note that its SAT
|
||||
def make_transform(resize_size: int = 256):
|
||||
to_tensor = v2.ToImage()
|
||||
resize = v2.Resize((resize_size, resize_size), antialias=True)
|
||||
to_float = v2.ToDtype(torch.float32, scale=True)
|
||||
normalize = v2.Normalize(
|
||||
mean=(0.485, 0.456, 0.406),
|
||||
std=(0.229, 0.224, 0.225),
|
||||
mean=(0.430, 0.411, 0.296),
|
||||
std=(0.213, 0.156, 0.143),
|
||||
)
|
||||
return v2.Compose([to_tensor, resize, to_float, normalize])
|
||||
|
||||
|
||||
def denormalize(tensor):
|
||||
mean = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1).to(tensor.device)
|
||||
std = torch.tensor([0.229, 0.224, 0.225]).view(3, 1, 1).to(tensor.device)
|
||||
mean = torch.tensor([0.430, 0.411, 0.296]).view(3, 1, 1).to(tensor.device)
|
||||
std = torch.tensor([0.213, 0.156, 0.143]).view(3, 1, 1).to(tensor.device)
|
||||
return tensor * std + mean
|
||||
|
||||
Reference in New Issue
Block a user