212 lines
6.2 KiB
Python
212 lines
6.2 KiB
Python
import math
|
|
import os
|
|
|
|
import torch
|
|
import torch.optim as optim
|
|
from torch.cuda.amp import autocast
|
|
from torchvision.utils import make_grid
|
|
from tqdm import tqdm
|
|
|
|
import wandb
|
|
from src.benchmark import benchmark
|
|
from src.dataset.cuhk_cr2 import get_dataset
|
|
from src.dataset.preprocess import denormalize
|
|
from src.model.utransformer import UTransformer
|
|
from src.rf import RF
|
|
|
|
train_dataset, test_dataset = get_dataset()
|
|
|
|
device = "cuda:1"
|
|
|
|
batch_size = 32
|
|
accumulation_steps = 2
|
|
total_epoch = 500
|
|
|
|
steps_per_epoch = len(train_dataset) // (batch_size)
|
|
total_steps = steps_per_epoch * total_epoch
|
|
warmup_steps = int(0.05 * total_steps)
|
|
|
|
grad_norm = 1.0
|
|
|
|
|
|
model = (
|
|
UTransformer.from_pretrained_backbone("facebook/dinov3-vitl16-pretrain-sat493m")
|
|
.to(device)
|
|
.bfloat16()
|
|
)
|
|
rf = RF(model, "icfm", "lpips_mse")
|
|
optimizer = optim.AdamW(model.parameters(), lr=3e-4)
|
|
|
|
|
|
# scheduler
|
|
def get_lr(step: int) -> float:
|
|
if step < warmup_steps:
|
|
return step / warmup_steps
|
|
else:
|
|
progress = (step - warmup_steps) / (total_steps - warmup_steps)
|
|
return 0.5 * (1 + math.cos(math.pi * progress))
|
|
|
|
|
|
scheduler = optim.lr_scheduler.LambdaLR(optimizer, get_lr)
|
|
|
|
wandb.init(project="cloud-removal-kmu", resume="allow")
|
|
|
|
# phase 2
|
|
# model.requires_grad_(True)
|
|
|
|
if not (wandb.run and wandb.run.name):
|
|
raise Exception("nope")
|
|
|
|
os.makedirs(f"artifact/{wandb.run.name}", exist_ok=True)
|
|
|
|
start_epoch = 0
|
|
checkpoint_path = f"artifact/{wandb.run.name}/checkpoint_final.pt"
|
|
if os.path.exists(checkpoint_path):
|
|
checkpoint = torch.load(checkpoint_path, map_location=device)
|
|
model.load_state_dict(checkpoint["model_state_dict"])
|
|
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
|
|
if "scheduler_state_dict" in checkpoint:
|
|
scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
|
|
start_epoch = checkpoint["epoch"] + 1
|
|
|
|
|
|
for epoch in range(start_epoch, total_epoch):
|
|
lossbin = {i: 0 for i in range(10)}
|
|
losscnt = {i: 1e-6 for i in range(10)}
|
|
|
|
train_dataset = train_dataset.shuffle(seed=epoch)
|
|
|
|
for i in tqdm(
|
|
range(0, len(train_dataset), batch_size),
|
|
desc=f"Epoch {epoch + 1}/{total_epoch}",
|
|
):
|
|
batch = train_dataset[i : i + batch_size]
|
|
cloud = batch["cloud"].to(device)
|
|
gt = batch["gt"].to(device)
|
|
|
|
with autocast(dtype=torch.bfloat16):
|
|
loss, blsct, loss_list = rf.forward(gt, cloud)
|
|
loss = loss / accumulation_steps
|
|
loss.backward()
|
|
|
|
if (i // batch_size + 1) % accumulation_steps == 0:
|
|
# total_norm = torch.nn.utils.clip_grad_norm_(
|
|
# model.parameters(), max_norm=grad_norm
|
|
# )
|
|
optimizer.step()
|
|
scheduler.step()
|
|
optimizer.zero_grad()
|
|
|
|
# wandb.log(
|
|
# {
|
|
# "train/grad_norm": total_norm.item(),
|
|
# }
|
|
# )
|
|
|
|
wandb.log(
|
|
{
|
|
"train/loss": loss.item() * accumulation_steps,
|
|
"train/lr": scheduler.get_last_lr()[0],
|
|
}
|
|
)
|
|
wandb.log(loss_list)
|
|
|
|
for t, lss in blsct:
|
|
bin_idx = min(int(t * 10), 9)
|
|
lossbin[bin_idx] += lss
|
|
losscnt[bin_idx] += 1
|
|
|
|
if (len(range(0, len(train_dataset), batch_size)) % accumulation_steps) != 0:
|
|
# total_norm = torch.nn.utils.clip_grad_norm_(
|
|
# model.parameters(), max_norm=grad_norm
|
|
# )
|
|
optimizer.step()
|
|
scheduler.step()
|
|
optimizer.zero_grad()
|
|
# wandb.log(
|
|
# {
|
|
# "train/grad_norm": total_norm.item(),
|
|
# }
|
|
# )
|
|
|
|
epoch_metrics = {f"lossbin/lossbin_{i}": lossbin[i] / losscnt[i] for i in range(10)}
|
|
epoch_metrics["epoch"] = epoch
|
|
wandb.log(epoch_metrics)
|
|
|
|
if (epoch + 1) % 50 == 0:
|
|
rf.model.eval()
|
|
psnr_sum = 0
|
|
ssim_sum = 0
|
|
lpips_sum = 0
|
|
count = 0
|
|
|
|
with torch.no_grad():
|
|
for i in tqdm(
|
|
range(0, len(test_dataset), batch_size),
|
|
desc=f"Benchmark {epoch + 1}/{total_epoch}",
|
|
):
|
|
batch = test_dataset[i : i + batch_size]
|
|
images = rf.sample(batch["cloud"].to(device))
|
|
image = denormalize(images[-1]).clamp(0, 1)
|
|
original = denormalize(batch["gt"]).clamp(0, 1)
|
|
|
|
if i == 0:
|
|
for step, demo in enumerate([images[0], images[-1]]):
|
|
images = wandb.Image(
|
|
make_grid(
|
|
denormalize(demo).clamp(0, 1).float()[:4], nrow=2
|
|
),
|
|
caption=f"step {step}",
|
|
)
|
|
wandb.log({"viz/decoded": images})
|
|
|
|
psnr, ssim, lpips, flawed_lpips = benchmark(image.cpu(), original.cpu())
|
|
psnr_sum += psnr.sum().item()
|
|
ssim_sum += ssim.sum().item()
|
|
lpips_sum += lpips.sum().item()
|
|
count += image.shape[0]
|
|
|
|
avg_psnr = psnr_sum / count
|
|
avg_ssim = ssim_sum / count
|
|
avg_lpips = lpips_sum / count
|
|
wandb.log(
|
|
{
|
|
"eval/psnr": avg_psnr,
|
|
"eval/ssim": avg_ssim,
|
|
"eval/lpips": avg_lpips,
|
|
"epoch": epoch + 1,
|
|
}
|
|
)
|
|
rf.model.train()
|
|
|
|
torch.save(
|
|
{
|
|
"epoch": epoch,
|
|
"model_state_dict": model.state_dict(),
|
|
"optimizer_state_dict": optimizer.state_dict(),
|
|
"scheduler_state_dict": scheduler.state_dict(),
|
|
},
|
|
f"artifact/{wandb.run.name}/checkpoint_epoch_{epoch + 1}.pt",
|
|
)
|
|
|
|
torch.save(
|
|
{
|
|
"epoch": epoch,
|
|
"model_state_dict": model.state_dict(),
|
|
"optimizer_state_dict": optimizer.state_dict(),
|
|
"scheduler_state_dict": scheduler.state_dict(),
|
|
},
|
|
checkpoint_path,
|
|
)
|
|
|
|
torch.save(
|
|
{
|
|
"epoch": epoch, # type: ignore
|
|
"model_state_dict": model.state_dict(),
|
|
"optimizer_state_dict": optimizer.state_dict(),
|
|
"scheduler_state_dict": scheduler.state_dict(),
|
|
},
|
|
f"artifact/{wandb.run.name}/checkpoint_final.pt",
|
|
)
|
|
wandb.finish()
|