Files
cloud-removal/src/model/utransformer.py
2025-11-02 22:55:07 +09:00

819 lines
29 KiB
Python

import copy
import math
from functools import lru_cache
from typing import Optional
import einops
import torch
from einops import rearrange
from huggingface_hub import hf_hub_download
from safetensors import safe_open
from torch import nn
from transformers.models.dinov3_vit.configuration_dinov3_vit import DINOv3ViTConfig
from src.model.attention import CrossAttention, PlainAttention, RoPE
from src.model.dino import (
DINOv3ViTAttention,
DINOv3ViTDropPath,
DINOv3ViTEmbeddings,
DINOv3ViTGatedMLP,
DINOv3ViTLayer,
DINOv3ViTLayerScale,
DINOv3ViTMLP,
DINOv3ViTRopePositionEmbedding,
)
from src.model.dit import modulate
from src.model.resnet import ResBlock
def create_coordinate(h, w, start=0, end=1, device="cuda:1", dtype=torch.float32):
# Create a grid of coordinates
x = torch.linspace(start, end, h, device=device, dtype=dtype)
y = torch.linspace(start, end, w, device=device, dtype=dtype)
# Create a 2D map using meshgrid
xx, yy = torch.meshgrid(x, y, indexing="ij")
# Stack the x and y coordinates to create the final map
coord_map = torch.stack([xx, yy], dim=-1)[None, ...]
coords = rearrange(coord_map, "b h w c -> b (h w) c", h=h, w=w)
return coords
class TimestepEmbedder(nn.Module):
def __init__(self, hidden_size: int, frequency_embedding_size: int = 256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half) / half
).to(t.device)
args = t[:, None] * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(
dtype=next(self.parameters()).dtype
)
t_emb = self.mlp(t_freq)
return t_emb
class LabelEmbedder(nn.Module):
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = int(dropout_prob > 0)
self.embedding_table = nn.Embedding(
num_classes + use_cfg_embedding, hidden_size
)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0]) < self.dropout_prob
drop_ids = drop_ids.cuda()
drop_ids = drop_ids.to(labels.device)
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
class DinoEncoderLayer(DINOv3ViTLayer):
def __init__(self, config: DINOv3ViTConfig):
super().__init__(config)
self.norm_cond = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.cond = DINOv3ViTAttention(config)
self.layer_scale_cond = DINOv3ViTLayerScale(config)
nn.init.constant_(self.layer_scale_cond.lambda1, 0)
self.norm1.requires_grad_(False)
self.norm2.requires_grad_(False)
self.attention.requires_grad_(False)
self.mlp.requires_grad_(False)
self.layer_scale1.requires_grad_(False)
self.layer_scale2.requires_grad_(False)
def forward(
self,
hidden_states: torch.Tensor,
*,
conditioning_input: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> torch.Tensor:
assert position_embeddings is not None
hidden_states = (
self.drop_path(
self.layer_scale1(
self.attention(
self.norm1(hidden_states),
attention_mask=attention_mask,
position_embeddings=position_embeddings,
)
)
)
+ hidden_states
)
hidden_states = (
self.drop_path(
self.layer_scale_cond(
self.cond(
hidden_states,
self.norm_cond(conditioning_input),
)
)
)
+ hidden_states
)
hidden_states = (
self.drop_path(self.layer_scale2(self.mlp(self.norm2(hidden_states))))
+ hidden_states
)
return hidden_states
class DinoDecoderLayer(DINOv3ViTLayer):
def __init__(self, config: DINOv3ViTConfig, depth: int):
super().__init__(config)
hidden_size = config.hidden_size // (4**depth)
hacky_config = copy.copy(config)
hacky_config.hidden_size = hidden_size
hacky_config.intermediate_size = hacky_config.intermediate_size // (3**depth)
self.norm1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
self.attention = PlainAttention(
hidden_size, config.num_attention_heads // (2**depth)
) # head scaling law?
self.layer_scale1 = DINOv3ViTLayerScale(hacky_config)
self.drop_path = (
DINOv3ViTDropPath(hacky_config.drop_path_rate)
if hacky_config.drop_path_rate > 0.0
else nn.Identity()
)
self.norm2 = nn.LayerNorm(hidden_size, eps=hacky_config.layer_norm_eps)
if config.use_gated_mlp:
self.mlp = DINOv3ViTGatedMLP(hacky_config)
else:
self.mlp = DINOv3ViTMLP(hacky_config)
self.layer_scale2 = DINOv3ViTLayerScale(hacky_config)
# adaln
self.adaln = nn.Sequential(
nn.SiLU(),
nn.Linear(config.hidden_size, 6 * hidden_size, bias=True),
)
def forward(
self,
hidden_states: torch.Tensor,
*,
conditioning_input: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> torch.Tensor:
conditioning_input = conditioning_input.squeeze(1) # type: ignore
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaln(
conditioning_input
).chunk(6, dim=-1)
hidden_states = (
self.drop_path(
gate_msa.unsqueeze(1)
* self.layer_scale1(
self.attention(
modulate(self.norm1(hidden_states), shift_msa, scale_msa),
position_embeddings=position_embeddings,
)
)
)
+ hidden_states
)
hidden_states = (
self.drop_path(
gate_mlp.unsqueeze(1)
* self.layer_scale2(
self.mlp(modulate(self.norm2(hidden_states), shift_mlp, scale_mlp))
)
)
+ hidden_states
)
return hidden_states
class ResidualUpscaler(nn.Module):
def __init__(
self, config: DINOv3ViTConfig, depth: list[int], bottleneck_dim: int = 128
): # max depth 2 (2**2 = 16 = patch size)
super().__init__()
def build_encoder(in_dim, num_layers=2):
return nn.Sequential(
nn.Conv2d(
in_dim,
bottleneck_dim,
kernel_size=1,
padding=0,
padding_mode="reflect",
bias=False,
),
*[
ResBlock(
bottleneck_dim,
bottleneck_dim,
kernel_size=1,
num_groups=8,
pad_mode="reflect",
norm_fn=nn.GroupNorm,
activation_fn=nn.SiLU,
use_conv_shortcut=False,
)
for _ in range(num_layers)
],
)
self.config = config
self.depth = depth
self.global_encode = nn.Linear(
config.hidden_size * len(depth),
bottleneck_dim * 2,
)
self.local_encode = nn.ModuleList(
[
nn.Linear(config.hidden_size, bottleneck_dim * 2)
if d != 0
else nn.Identity()
for d in depth
]
)
self.q_norm = nn.ModuleList(
[nn.LayerNorm(bottleneck_dim) if d != 0 else nn.Identity() for d in depth]
)
self.k_norm = nn.ModuleList(
[nn.LayerNorm(bottleneck_dim) if d != 0 else nn.Identity() for d in depth]
)
self.v_downsample = nn.ModuleList(
[
nn.Linear(config.hidden_size, config.hidden_size // (4**d))
if d != 0
else nn.Identity()
for d in depth
]
)
self.cross_attn = nn.ModuleList(
[
CrossAttention(
bottleneck_dim,
bottleneck_dim,
config.hidden_size // (4**d),
)
if d != 0
else nn.Identity()
for d in depth
]
)
self.image_encoder = build_encoder(3)
self.q_encoder = build_encoder(bottleneck_dim)
self.k_encoder = build_encoder(bottleneck_dim)
self.rope = RoPE(bottleneck_dim)
# ok just shuffle it; no dont
# self.pixel_shuffle = [nn.PixelShuffle(2), nn.PixelShuffle(4)]
def forward(self, pixel_values: torch.Tensor, residuals: list[torch.Tensor]):
# residual[0] => deepest, -1 => shallowest; pixel values (b, 3, h, w) / residuals [(b, 1 + self.config.num_register_tokens + seq, d), (b, 1 + self.config.num_register_tokens + seq, d)]
# objective: say we have (1024, 1024, 512) residual. we want to make multi head attention query well
assert self.config.patch_size is not None
image_h, image_w = pixel_values.shape[-2], pixel_values.shape[-1]
rest = [
residual[:, : 1 + self.config.num_register_tokens] for residual in residuals
]
residuals = [
residual[:, 1 + self.config.num_register_tokens :] for residual in residuals
]
global_shift, global_scale = self.global_encode(
einops.rearrange(
torch.stack(residuals, dim=1), "b depth s h -> b s (depth h)"
)
).chunk(2, dim=-1) # patch-level global btw
image_residual = self.image_encoder(pixel_values) # messy; todo: cleanup
coords = create_coordinate(pixel_values.shape[-2], pixel_values.shape[-1])
image_residual = rearrange(image_residual, "b c h w -> b (h w) c")
image_residual = self.rope(image_residual, coords)
image_residual = rearrange(
image_residual, "b (h w) c -> b c h w", h=pixel_values.shape[-2]
)
q = self.q_encoder(image_residual)
k = self.k_encoder(image_residual)
reformed_residual = []
for i, (depth, residual, rest) in enumerate(zip(self.depth, residuals, rest)):
if depth == 0:
reformed_residual.append(torch.cat((rest, residual), dim=1))
continue
local_shift, local_scale = self.local_encode[i](residual).chunk(2, dim=-1)
local_q = self.q_norm[i](
einops.rearrange(
torch.nn.functional.adaptive_avg_pool2d(
q,
output_size=(
image_h // self.config.patch_size * (2**depth),
image_w // self.config.patch_size * (2**depth),
),
),
"b c h w -> b (h w) c",
)
)
local_k = (1 + local_scale) * (
(1 + global_scale)
* self.k_norm[i](
einops.rearrange(
torch.nn.functional.adaptive_avg_pool2d(
k,
output_size=(
image_h // self.config.patch_size,
image_w // self.config.patch_size,
),
),
"b c h w -> b (h w) c",
)
)
+ global_shift
) + local_shift
local_v = self.v_downsample[i](residual)
local_rest = self.v_downsample[i](rest)
final_residual = torch.concat(
(local_rest, self.cross_attn[i](local_q, local_k, local_v)), dim=1
)
reformed_residual.append(final_residual)
return reformed_residual
class DinoV3ViTDecoder(nn.Module):
def __init__(self, config: DINOv3ViTConfig):
super().__init__()
self.config = config
self.num_channels_out = config.num_channels
self.patch_size = config.patch_size
self.projection = nn.Linear(
config.hidden_size // 16, config.num_channels * 16, bias=True
)
self.upscale = nn.PixelShuffle(4)
nn.init.zeros_(self.projection.weight)
nn.init.zeros_(
self.projection.bias
) if self.projection.bias is not None else None
def forward(self, x: torch.Tensor, image_size: tuple[int, int]) -> torch.Tensor:
return self.upscale(
self.projection(
einops.rearrange(
x,
"b (h w) d -> b h w d",
h=image_size[0] // 4,
w=image_size[1] // 4,
)
).permute(0, 3, 1, 2)
)
class NerfEmbedder(nn.Module):
def __init__(self, in_channels, hidden_size_input, max_freqs):
super().__init__()
self.max_freqs = max_freqs
self.hidden_size_input = hidden_size_input
self.embedder = nn.Sequential(
nn.Linear(in_channels + max_freqs**2, hidden_size_input, bias=True),
)
@lru_cache
def fetch_pos(self, patch_size, device, dtype):
pos_x = torch.linspace(0, 1, patch_size, device=device, dtype=dtype)
pos_y = torch.linspace(0, 1, patch_size, device=device, dtype=dtype)
pos_y, pos_x = torch.meshgrid(pos_y, pos_x, indexing="ij")
pos_x = pos_x.reshape(-1, 1, 1)
pos_y = pos_y.reshape(-1, 1, 1)
freqs = torch.linspace(
0, self.max_freqs, self.max_freqs, dtype=dtype, device=device
)
freqs_x = freqs[None, :, None]
freqs_y = freqs[None, None, :]
coeffs = (1 + freqs_x * freqs_y) ** -1
dct_x = torch.cos(pos_x * freqs_x * torch.pi)
dct_y = torch.cos(pos_y * freqs_y * torch.pi)
dct = (dct_x * dct_y * coeffs).view(1, -1, self.max_freqs**2)
return dct
def forward(self, inputs):
target_dtype = self.embedder[0].weight.dtype
inputs = inputs.to(dtype=target_dtype)
B, P2, C = inputs.shape
patch_size = int(P2**0.5)
device = inputs.device
dtype = inputs.dtype
dct = self.fetch_pos(patch_size, device, dtype)
dct = dct.repeat(B, 1, 1)
inputs = torch.cat([inputs, dct], dim=-1)
inputs = self.embedder(inputs)
return inputs
class NerfBlock(nn.Module):
def __init__(self, hidden_size_s: int, hidden_size_x: int, mlp_ratio: int = 4):
super().__init__()
self.param_generator1 = nn.Sequential(
nn.Linear(hidden_size_s, 2 * hidden_size_x**2 * mlp_ratio, bias=True),
)
self.norm = nn.RMSNorm(hidden_size_x, eps=1e-6)
self.mlp_ratio = mlp_ratio
def forward(self, x, s):
batch_size, num_x, hidden_size_x = x.shape
mlp_params1 = self.param_generator1(s)
fc1_param1, fc2_param1 = mlp_params1.chunk(2, dim=-1)
fc1_param1 = fc1_param1.view(
batch_size, hidden_size_x, hidden_size_x * self.mlp_ratio
)
fc2_param1 = fc2_param1.view(
batch_size, hidden_size_x * self.mlp_ratio, hidden_size_x
)
# normalize fc1
normalized_fc1_param1 = torch.nn.functional.normalize(fc1_param1, dim=-2)
# normalize fc2
normalized_fc2_param1 = torch.nn.functional.normalize(fc2_param1, dim=-2)
# mlp 1
res_x = x
x = self.norm(x)
x = torch.bmm(x, normalized_fc1_param1)
x = torch.nn.functional.silu(x)
x = torch.bmm(x, normalized_fc2_param1)
x = x + res_x
return x
class NerfFinalLayer(nn.Module):
def __init__(self, hidden_size, out_channels):
super().__init__()
self.norm = nn.RMSNorm(hidden_size, eps=1e-6)
self.linear = nn.Linear(hidden_size, out_channels, bias=True)
def forward(self, x):
x = self.norm(x)
x = self.linear(x)
return x
class UTransformer(nn.Module):
def __init__(
self,
config: DINOv3ViTConfig,
num_classes: int,
nerf_patch=16,
nerf_hidden=64,
scale_factor: int = 4,
):
super().__init__()
self.config = config
self.scale_factor = scale_factor
self.nerf_patch_size = nerf_patch
assert config.num_hidden_layers % scale_factor % 3 == 0
self.embeddings = DINOv3ViTEmbeddings(config)
self.rope_embeddings = DINOv3ViTRopePositionEmbedding(config)
def gen_rope(depth: int):
hidden_size = config.hidden_size // (4**depth)
hacky_config = copy.copy(config)
hacky_config.hidden_size = hidden_size
hacky_config.intermediate_size = hacky_config.intermediate_size // (
3**depth
)
hacky_config.num_attention_heads = hacky_config.num_attention_heads // (
2**depth
)
return DINOv3ViTRopePositionEmbedding(hacky_config)
self.decode_ropes = nn.ModuleList([gen_rope(i + 1) for i in range(2)])
self.t_embedder = TimestepEmbedder(config.hidden_size)
self.encoder_layers = nn.ModuleList(
[DinoEncoderLayer(config) for _ in range(config.num_hidden_layers)]
)
self.encoder_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
DEPTH_LAYER = [0, 0, 1, 1, 2, 2]
self.residual_upscaler = ResidualUpscaler(
config,
DEPTH_LAYER, # hardcoded, sorry
bottleneck_dim=128,
)
self.decoder_layers = nn.ModuleList(
[
nn.ModuleList(
[
DinoDecoderLayer(config, depth)
for _ in range(DEPTH_LAYER.count(depth))
]
)
for depth in sorted(set(DEPTH_LAYER), key=DEPTH_LAYER.index)
]
)
self.residual_merger = nn.ModuleList(
[
nn.ModuleList(
[
nn.Sequential(
nn.SiLU(),
nn.Linear(
config.hidden_size // (4**depth),
2 * config.hidden_size // (4**depth),
),
)
for _ in range(DEPTH_LAYER.count(depth))
]
)
for depth in sorted(set(DEPTH_LAYER), key=DEPTH_LAYER.index)
]
)
self.upsample = nn.ModuleList([nn.PixelShuffle(2) for _ in range(2)])
self.upsample_latent = nn.ModuleList(
[
nn.Linear(
config.hidden_size // (4**depth),
config.hidden_size // (4 ** (depth + 1)),
)
for depth in range(2)
]
)
self.rest_decoder = nn.ModuleList(
[DinoDecoderLayer(config, 2) for _ in range(4)]
)
self.decoder_norm = nn.LayerNorm(
(config.hidden_size // (4**2)), eps=config.layer_norm_eps
)
# nerf!
self.nerf_encoder = NerfEmbedder(3, nerf_hidden, 8) # (rgb, hidden, freq)
self.nerf_decoder = nn.ModuleList(
[NerfBlock(self.config.hidden_size, nerf_hidden) for _ in range(12)]
)
self.final_layer = NerfFinalLayer(nerf_hidden, 3)
# freeze pretrained
self.embeddings.requires_grad_(False)
self.rope_embeddings.requires_grad_(False)
self.encoder_norm.requires_grad_(False)
def forward(
self,
pixel_values: torch.Tensor,
time: torch.Tensor,
# cond: torch.Tensor,
bool_masked_pos: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
):
if time.dim() == 0:
time = time.repeat(pixel_values.shape[0])
# resolution config
B = pixel_values.shape[0]
dino_h = pixel_values.shape[-2] // self.config.patch_size
dino_w = pixel_values.shape[-1] // self.config.patch_size
nerf_h = pixel_values.shape[-2] // self.nerf_patch_size
nerf_w = pixel_values.shape[-1] // self.nerf_patch_size
pixel_values = pixel_values.to(self.embeddings.patch_embeddings.weight.dtype)
position_embeddings = self.rope_embeddings(pixel_values)
x = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
t = self.t_embedder(time).unsqueeze(1)
# y = self.y_embedder(cond, self.training).unsqueeze(1)
# conditioning_input = t.to(x.dtype) + y.to(x.dtype)
conditioning_input = t.to(x.dtype)
residual = []
for i, layer_module in enumerate(self.encoder_layers):
if i % self.scale_factor == 0:
residual.append(x)
layer_head_mask = head_mask[i] if head_mask is not None else None
x = layer_module(
x,
conditioning_input=conditioning_input,
attention_mask=layer_head_mask,
position_embeddings=position_embeddings,
)
x = self.encoder_norm(x)
reversed_residual = self.residual_upscaler(pixel_values, residual[::-1])
residual_idx = 0
for depth, layers in enumerate(self.decoder_layers):
for i, layer_module in enumerate(layers): # type: ignore
x = layer_module(
x,
conditioning_input=conditioning_input,
attention_mask=None,
position_embeddings=position_embeddings,
)
shift, scale = self.residual_merger[depth][i]( # type: ignore
reversed_residual[residual_idx]
).chunk(2, dim=-1)
x = x * (1 + scale) + shift
residual_idx += 1
x = torch.cat(
(
rearrange(
self.upsample[depth](
rearrange(
x[:, 1 + self.config.num_register_tokens :],
"b (h w) d -> b d h w",
h=pixel_values.shape[-2]
// (self.config.patch_size)
* (2**depth),
)
),
"b d h w -> b (h w) d",
)
if depth != 2
else x[:, 1 + self.config.num_register_tokens :],
self.upsample_latent[depth](
x[:, : 1 + self.config.num_register_tokens]
)
if depth != 2
else x[:, : 1 + self.config.num_register_tokens],
),
dim=1,
)
position_embeddings = (
self.decode_ropes[depth](
torch.zeros(
(
1,
1,
pixel_values.shape[-2] * (2 ** (depth + 1)),
pixel_values.shape[-1] * (2 ** (depth + 1)),
),
device=x.device,
).to(self.embeddings.patch_embeddings.weight.dtype)
)
if depth != 2
else position_embeddings
)
for i, layer_module in enumerate(self.rest_decoder):
layer_head_mask = head_mask[i] if head_mask is not None else None
x = layer_module(
x,
conditioning_input=conditioning_input,
attention_mask=layer_head_mask,
position_embeddings=position_embeddings,
do_condition=False,
) # (batch, image // patch^2, 1024)
x = x[:, 1 + self.config.num_register_tokens :, :]
nerf_cond = nn.functional.silu(t + x) # (batch, image // patch^2, 1024)
nerf_cond = nerf_cond.reshape(
B, dino_h, dino_w, self.config.hidden_size
).permute(0, 3, 1, 2) # (batch, 1024, image // patch, image // patch)
# nerf_cond = nn.functional.interpolate(
# nerf_cond, size=(nerf_h, nerf_w), mode="bilinear", align_corners=False
# )
nerf_cond = (
nerf_cond.permute(0, 2, 3, 1)
.reshape(-1, nerf_h * nerf_w, self.config.hidden_size)
.view(-1, self.config.hidden_size)
)
# nerf
x_nerf = nn.functional.unfold(
pixel_values, self.nerf_patch_size, stride=self.nerf_patch_size
).transpose(1, 2)
x_nerf = x_nerf.reshape(
B * x_nerf.shape[1], -1, self.nerf_patch_size**2
).transpose(1, 2)
x_nerf = self.nerf_encoder(x_nerf)
for module in self.nerf_decoder:
x_nerf = module(x_nerf, nerf_cond)
x_nerf = self.final_layer(x_nerf)
num_patches = nerf_h * nerf_w
x_nerf = x_nerf.reshape(
B * num_patches, -1
) # (B*num_patches, 48): flatten pixels+RGB per patch
x_nerf = (
x_nerf.view(B, num_patches, -1).transpose(1, 2).contiguous()
) # (B, 48, num_patches)
res = nn.functional.fold(
x_nerf,
(pixel_values.shape[-2], pixel_values.shape[-1]),
kernel_size=self.nerf_patch_size,
stride=self.nerf_patch_size,
)
return res
def get_residual(
self,
pixel_values: torch.Tensor,
time: Optional[torch.Tensor],
do_condition: bool,
):
pixel_values = pixel_values.to(self.embeddings.patch_embeddings.weight.dtype)
position_embeddings = self.rope_embeddings(pixel_values)
x = self.embeddings(pixel_values, bool_masked_pos=None)
if do_condition:
t = self.t_embedder(time).unsqueeze(1)
# y = self.y_embedder(cond, self.training).unsqueeze(1)
# conditioning_input = t.to(x.dtype) + y.to(x.dtype)
conditioning_input = t.to(x.dtype)
else:
conditioning_input = None
residual = []
for i, layer_module in enumerate(self.encoder_layers):
if i % self.scale_factor == 0:
residual.append(x)
x = layer_module(
x,
conditioning_input=conditioning_input,
attention_mask=None,
position_embeddings=position_embeddings,
)
x = x[:, 1 + self.config.num_register_tokens :]
x = self.decoder_norm(x)
return self.decoder(x, image_size=pixel_values.shape[-2:]), residual
@staticmethod
def from_pretrained_backbone(name: str):
config = DINOv3ViTConfig.from_pretrained(name)
instance = UTransformer(config, 0)
weight_dict = {}
with safe_open(
hf_hub_download(name, "model.safetensors"), framework="pt", device="cuda:1"
) as f:
for key in f.keys():
new_key = key.replace("layer.", "encoder_layers.").replace(
"norm.", "encoder_norm."
)
weight_dict[new_key] = f.get_tensor(key)
instance.load_state_dict(weight_dict, strict=False)
return instance