23 lines
491 B
Python
23 lines
491 B
Python
import lpips
|
|
from pytorch_msssim import ssim
|
|
from torchmetrics.image import (
|
|
PeakSignalNoiseRatio,
|
|
StructuralSimilarityIndexMeasure,
|
|
)
|
|
|
|
psnr = PeakSignalNoiseRatio(1.0, reduction="none", dim=(1, 2, 3))
|
|
lp = lpips.LPIPS(net="alex")
|
|
|
|
|
|
def benchmark(image1, image2):
|
|
return (
|
|
psnr(image1, image2),
|
|
ssim(
|
|
image1,
|
|
image2,
|
|
data_range=1.0,
|
|
size_average=False,
|
|
),
|
|
lp(image1 * 2 - 1, image2 * 2 - 1),
|
|
)
|