fix wrong average of psnr

This commit is contained in:
neulus
2025-10-02 19:40:00 +09:00
parent a601dc6095
commit 6bb6c09638
17 changed files with 221 additions and 39 deletions

21
main.py
View File

@@ -2,16 +2,17 @@ import os
import torch import torch
import torch.optim as optim import torch.optim as optim
from torchvision.utils import make_grid
from tqdm import tqdm from tqdm import tqdm
import wandb import wandb
from src.benchmark import benchmark from src.benchmark import benchmark
from src.dataset.cuhk_cr1 import get_dataset from src.dataset.cuhk_cr2 import get_dataset
from src.dataset.preprocess import denormalize from src.dataset.preprocess import denormalize
from src.model.utransformer import UTransformer from src.model.utransformer import UTransformer
from src.rf import RF from src.rf import RF
device = "cuda:2" device = "cuda:1"
model = UTransformer.from_pretrained_backbone( model = UTransformer.from_pretrained_backbone(
"facebook/dinov3-vitl16-pretrain-sat493m" "facebook/dinov3-vitl16-pretrain-sat493m"
@@ -21,7 +22,7 @@ optimizer = optim.AdamW(model.parameters(), lr=1e-4)
train_dataset, test_dataset = get_dataset() train_dataset, test_dataset = get_dataset()
wandb.init(project="cloud-removal-kmu", id="icy-field-12", resume="allow") wandb.init(project="cloud-removal-kmu", id="dashing-moon-31", resume="allow")
if not (wandb.run and wandb.run.name): if not (wandb.run and wandb.run.name):
raise Exception("nope") raise Exception("nope")
@@ -36,7 +37,7 @@ if os.path.exists(checkpoint_path):
optimizer.load_state_dict(checkpoint["optimizer_state_dict"]) optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
start_epoch = checkpoint["epoch"] + 1 start_epoch = checkpoint["epoch"] + 1
batch_size = 4 batch_size = 8
accumulation_steps = 8 accumulation_steps = 8
total_epoch = 1000 total_epoch = 1000
for epoch in range(start_epoch, total_epoch): for epoch in range(start_epoch, total_epoch):
@@ -89,10 +90,20 @@ for epoch in range(start_epoch, total_epoch):
desc=f"Benchmark {epoch + 1}/{total_epoch}", desc=f"Benchmark {epoch + 1}/{total_epoch}",
): ):
batch = test_dataset[i : i + batch_size] batch = test_dataset[i : i + batch_size]
images = rf.sample(batch["cloud"].to(device)) images = rf.sample_heun(batch["cloud"].to(device))
image = denormalize(images[-1]).clamp(0, 1) image = denormalize(images[-1]).clamp(0, 1)
original = denormalize(batch["gt"]).clamp(0, 1) original = denormalize(batch["gt"]).clamp(0, 1)
if i == 0:
for step, demo in enumerate([images[0], images[-1]]):
images = wandb.Image(
make_grid(
denormalize(demo).clamp(0, 1).float()[:4], nrow=2
),
caption=f"step {step}",
)
wandb.log({"viz/decoded": images})
psnr, ssim, lpips = benchmark(image.cpu(), original.cpu()) psnr, ssim, lpips = benchmark(image.cpu(), original.cpu())
psnr_sum += psnr.sum().item() psnr_sum += psnr.sum().item()
ssim_sum += ssim.sum().item() ssim_sum += ssim.sum().item()

View File

@@ -10,8 +10,8 @@ from src.dataset.preprocess import denormalize
from src.model.utransformer import UTransformer from src.model.utransformer import UTransformer
from src.rf import RF from src.rf import RF
checkpoint_path = "artifact/icy-field-12/checkpoint_epoch_260.pt" checkpoint_path = "artifact/daily-forest-25/checkpoint_final.pt"
device = "cuda:2" device = "cuda:1"
save_dir = "test_images" save_dir = "test_images"
os.makedirs(save_dir, exist_ok=True) os.makedirs(save_dir, exist_ok=True)
@@ -28,7 +28,7 @@ rf.model.eval()
_, test_dataset = get_dataset() _, test_dataset = get_dataset()
batch_size = 1 batch_size = 8
psnr_sum = 0 psnr_sum = 0
ssim_sum = 0 ssim_sum = 0
lpips_sum = 0 lpips_sum = 0
@@ -39,7 +39,7 @@ max_save = 10
with torch.no_grad(): with torch.no_grad():
for i in tqdm(range(0, len(test_dataset), batch_size), desc="Evaluating"): for i in tqdm(range(0, len(test_dataset), batch_size), desc="Evaluating"):
batch = test_dataset[i : i + batch_size] batch = test_dataset[i : i + batch_size]
images = rf.sample(batch["cloud"].to(device)) images = rf.sample_heun(batch["cloud"].to(device), 1)
image = denormalize(images[-1]).clamp(0, 1) image = denormalize(images[-1]).clamp(0, 1)
original = denormalize(batch["gt"]).clamp(0, 1) original = denormalize(batch["gt"]).clamp(0, 1)
@@ -49,12 +49,13 @@ with torch.no_grad():
save_image(image[j], f"{save_dir}/pred_{saved_count}.png") save_image(image[j], f"{save_dir}/pred_{saved_count}.png")
save_image(original[j], f"{save_dir}/gt_{saved_count}.png") save_image(original[j], f"{save_dir}/gt_{saved_count}.png")
save_image( save_image(
denormalize(batch["x0"][j]).clamp(0, 1), denormalize(batch["cloud"][j]).clamp(0, 1),
f"{save_dir}/input_{saved_count}.png", f"{save_dir}/input_{saved_count}.png",
) )
saved_count += 1 saved_count += 1
psnr, ssim, lpips = benchmark(image.cpu(), original.cpu()) psnr, ssim, lpips = benchmark(image.cpu(), original.cpu())
print(psnr, ssim, lpips)
psnr_sum += psnr.sum().item() psnr_sum += psnr.sum().item()
ssim_sum += ssim.sum().item() ssim_sum += ssim.sum().item()
lpips_sum += lpips.sum().item() lpips_sum += lpips.sum().item()

View File

@@ -4,6 +4,7 @@ from torchmetrics.image import (
StructuralSimilarityIndexMeasure, StructuralSimilarityIndexMeasure,
) )
psnr = PeakSignalNoiseRatio(1.0, reduction="none", dim=(1, 2, 3))
ssim = StructuralSimilarityIndexMeasure(data_range=1.0, reduction="none") ssim = StructuralSimilarityIndexMeasure(data_range=1.0, reduction="none")
lpips = LearnedPerceptualImagePatchSimilarity( lpips = LearnedPerceptualImagePatchSimilarity(
net_type="alex", reduction="none", normalize=True net_type="alex", reduction="none", normalize=True
@@ -11,5 +12,4 @@ lpips = LearnedPerceptualImagePatchSimilarity(
def benchmark(image1, image2): def benchmark(image1, image2):
psnr = PeakSignalNoiseRatio(1.0, reduction="none")
return psnr(image1, image2), ssim(image1, image2), lpips(image1, image2) return psnr(image1, image2), ssim(image1, image2), lpips(image1, image2)

View File

@@ -45,7 +45,7 @@ def get_dataset() -> tuple[Dataset, Dataset]:
batch_size=32, batch_size=32,
remove_columns=dataset["train"].column_names, remove_columns=dataset["train"].column_names,
) )
dataset.set_format(type="torch", columns=["x0", "x1"]) dataset.set_format(type="torch", columns=["cloud", "gt"])
dataset.save_to_disk("datasets/CUHK-CR1") dataset.save_to_disk("datasets/CUHK-CR1")
return dataset["train"], dataset["test"] return dataset["train"], dataset["test"]

62
src/dataset/cuhk_cr2.py Normal file
View File

@@ -0,0 +1,62 @@
import os
from pathlib import Path
from datasets import Dataset, DatasetDict, Image
from src.dataset.preprocess import make_transform
transform = make_transform(512)
def get_dataset() -> tuple[Dataset, Dataset]:
if os.path.exists("datasets/CUHK-CR2"):
dataset = DatasetDict.load_from_disk("datasets/CUHK-CR2")
return dataset["train"], dataset["test"]
data_dir = Path("/data2/C-CUHK/CUHK-CR2")
train_cloud = sorted((data_dir / "train/cloud").glob("*.png"))
train_no_cloud = sorted((data_dir / "train/label").glob("*.png"))
test_cloud = sorted((data_dir / "test/cloud").glob("*.png"))
test_no_cloud = sorted((data_dir / "test/label").glob("*.png"))
dataset = DatasetDict(
{
"train": Dataset.from_dict(
{
"cloud": [str(p) for p in train_cloud],
"label": [str(p) for p in train_no_cloud],
}
)
.cast_column("cloud", Image())
.cast_column("label", Image()),
"test": Dataset.from_dict(
{
"cloud": [str(p) for p in test_cloud],
"label": [str(p) for p in test_no_cloud],
}
)
.cast_column("cloud", Image())
.cast_column("label", Image()),
}
)
dataset = dataset.map(
preprocess_function,
batched=True,
batch_size=32,
remove_columns=dataset["train"].column_names,
)
dataset.set_format(type="torch", columns=["cloud", "gt"])
dataset.save_to_disk("datasets/CUHK-CR2")
return dataset["train"], dataset["test"]
def preprocess_function(examples):
x0_list = []
x1_list = []
for x0_img, x1_img in zip(examples["cloud"], examples["label"]):
x0_transformed = transform(x0_img)
x1_transformed = transform(x1_img)
x0_list.append(x0_transformed)
x1_list.append(x1_transformed)
return {"cloud": x0_list, "gt": x1_list}

View File

@@ -105,10 +105,11 @@ class DinoConditionedLayer(DINOv3ViTLayer):
conditioning_input: Optional[torch.Tensor] = None, conditioning_input: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
do_condition: bool = True,
**kwargs, **kwargs,
) -> torch.Tensor: ) -> torch.Tensor:
assert position_embeddings is not None assert position_embeddings is not None
assert conditioning_input is not None assert conditioning_input is not None or not do_condition
residual = hidden_states residual = hidden_states
hidden_states = self.norm1(hidden_states) hidden_states = self.norm1(hidden_states)
@@ -120,6 +121,7 @@ class DinoConditionedLayer(DINOv3ViTLayer):
hidden_states = self.layer_scale1(hidden_states) hidden_states = self.layer_scale1(hidden_states)
hidden_states = self.drop_path(hidden_states) + residual hidden_states = self.drop_path(hidden_states) + residual
if do_condition:
residual = hidden_states residual = hidden_states
hidden_states = self.norm_cond(hidden_states) hidden_states = self.norm_cond(hidden_states)
hidden_states, _ = self.cond( hidden_states, _ = self.cond(
@@ -191,6 +193,8 @@ class DinoV3ViTDecoder(nn.Module):
) )
self.pixel_shuffle = nn.PixelShuffle(self.patch_size) self.pixel_shuffle = nn.PixelShuffle(self.patch_size)
nn.init.zeros_(self.projection.weight)
nn.init.zeros_(self.projection.bias)
def forward(self, x: torch.Tensor, image_size: tuple[int, int]) -> torch.Tensor: def forward(self, x: torch.Tensor, image_size: tuple[int, int]) -> torch.Tensor:
batch_size = x.shape[0] batch_size = x.shape[0]
@@ -211,9 +215,14 @@ class DinoV3ViTDecoder(nn.Module):
class UTransformer(nn.Module): class UTransformer(nn.Module):
def __init__(self, config: DINOv3ViTConfig, num_classes: int): def __init__(
self, config: DINOv3ViTConfig, num_classes: int, scale_factor: int = 4
):
super().__init__() super().__init__()
self.config = config self.config = config
self.scale_factor = scale_factor
assert config.num_hidden_layers % scale_factor == 0
self.embeddings = DINOv3ViTEmbeddings(config) self.embeddings = DINOv3ViTEmbeddings(config)
self.rope_embeddings = DINOv3ViTRopePositionEmbedding(config) self.rope_embeddings = DINOv3ViTRopePositionEmbedding(config)
@@ -228,18 +237,21 @@ class UTransformer(nn.Module):
for _ in range(config.num_hidden_layers) for _ in range(config.num_hidden_layers)
] ]
) )
self.encoder_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder_layers = nn.ModuleList( self.decoder_layers = nn.ModuleList(
[ [
DinoConditionedLayer(config, False) DinoConditionedLayer(config, False)
for _ in range(config.num_hidden_layers // 2) for _ in range(config.num_hidden_layers // scale_factor)
] ]
) )
self.decoder_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = DinoV3ViTDecoder(config) self.decoder = DinoV3ViTDecoder(config)
# freeze pretrained # freeze pretrained
self.embeddings.requires_grad_(False) self.embeddings.requires_grad_(False)
self.rope_embeddings.requires_grad_(False) self.rope_embeddings.requires_grad_(False)
self.encoder_norm.requires_grad_(False)
def forward( def forward(
self, self,
@@ -260,6 +272,7 @@ class UTransformer(nn.Module):
residual = [] residual = []
for i, layer_module in enumerate(self.encoder_layers): for i, layer_module in enumerate(self.encoder_layers):
if i % self.scale_factor == 0:
residual.append(x) residual.append(x)
layer_head_mask = head_mask[i] if head_mask is not None else None layer_head_mask = head_mask[i] if head_mask is not None else None
x = layer_module( x = layer_module(
@@ -269,35 +282,71 @@ class UTransformer(nn.Module):
position_embeddings=position_embeddings, position_embeddings=position_embeddings,
) )
x = self.encoder_norm(x)
reversed_residual = residual[::-1]
for i, layer_module in enumerate(self.decoder_layers): for i, layer_module in enumerate(self.decoder_layers):
layer_head_mask = head_mask[i] if head_mask is not None else None layer_head_mask = head_mask[i] if head_mask is not None else None
x = x + residual.pop() + residual.pop()
x = layer_module( x = layer_module(
x, x,
conditioning_input=conditioning_input, conditioning_input=conditioning_input,
attention_mask=layer_head_mask, attention_mask=layer_head_mask,
position_embeddings=position_embeddings, position_embeddings=position_embeddings,
) )
x = x + reversed_residual[i]
return self.decoder(x, image_size=pixel_values.shape[-2:]) x = self.decoder_norm(x)
return self.decoder(x, image_size=pixel_values.shape[-2:]), residual
def get_residual(
self,
pixel_values: torch.Tensor,
time: Optional[torch.Tensor],
do_condition: bool,
):
pixel_values = pixel_values.to(self.embeddings.patch_embeddings.weight.dtype)
position_embeddings = self.rope_embeddings(pixel_values)
x = self.embeddings(pixel_values, bool_masked_pos=None)
if do_condition:
t = self.t_embedder(time).unsqueeze(1)
# y = self.y_embedder(cond, self.training).unsqueeze(1)
# conditioning_input = t.to(x.dtype) + y.to(x.dtype)
conditioning_input = t.to(x.dtype)
else:
conditioning_input = None
residual = []
for i, layer_module in enumerate(self.encoder_layers):
if i % self.scale_factor == 0:
residual.append(x)
x = layer_module(
x,
conditioning_input=conditioning_input,
attention_mask=None,
position_embeddings=position_embeddings,
do_condition=do_condition,
)
return residual
@staticmethod @staticmethod
def from_pretrained_backbone(name: str): def from_pretrained_backbone(name: str):
config = DINOv3ViTConfig.from_pretrained(name) config = DINOv3ViTConfig.from_pretrained(name)
instance = UTransformer(config, 0).to("cuda:2") instance = UTransformer(config, 0).to("cuda:1")
weight_dict = {} weight_dict = {}
with safe_open( with safe_open(
hf_hub_download(name, "model.safetensors"), framework="pt", device="cuda:2" hf_hub_download(name, "model.safetensors"), framework="pt", device="cuda:1"
) as f: ) as f:
for key in f.keys(): for key in f.keys():
new_key = key.replace("layer.", "encoder_layers.").replace( new_key = key.replace("layer.", "encoder_layers.").replace(
"norm.", "encoder_norm." "norm.", "encoder_norm."
) )
if key.startswith("norm."):
continue
weight_dict[new_key] = f.get_tensor(key) weight_dict[new_key] = f.get_tensor(key)
instance.load_state_dict(weight_dict, strict=False) instance.load_state_dict(weight_dict, strict=False)

View File

@@ -13,17 +13,13 @@ def pseudo_huber_loss(x: torch.Tensor, c=0.00054):
class RF: class RF:
def __init__(self, model, ln=False, ushaped=True, loss_fn="lpips_huber"): def __init__(self, model, ln=False, ushaped=True, loss_fn="lpips_mse_enhanced"):
self.model = model self.model = model
self.ln = ln self.ln = ln
self.ushaped = ushaped self.ushaped = ushaped
self.loss_fn = loss_fn self.loss_fn = loss_fn
self.lpips = ( self.lpips = lpips.LPIPS(net="vgg").to("cuda:1") if "lpips" in loss_fn else None
lpips.LPIPS(net="vgg").to(model.device)
if loss_fn == "lpips_huber"
else None
)
def forward(self, x0, z1): def forward(self, x0, z1):
# x0 is gt / z is noise # x0 is gt / z is noise
@@ -41,7 +37,7 @@ class RF:
texp = t.view([b, *([1] * len(x0.shape[1:]))]) texp = t.view([b, *([1] * len(x0.shape[1:]))])
zt = (1 - texp) * x0 + texp * z1 zt = (1 - texp) * x0 + texp * z1
vtheta = self.model(zt, t) vtheta, residual = self.model(zt, t)
if self.loss_fn == "lpips_huber": if self.loss_fn == "lpips_huber":
# https://ar5iv.labs.arxiv.org/html/2405.20320v1 / (z - x) - v_θ(x_t, t) # https://ar5iv.labs.arxiv.org/html/2405.20320v1 / (z - x) - v_θ(x_t, t)
@@ -57,6 +53,41 @@ class RF:
weight = t.view(-1) weight = t.view(-1)
loss = (1 - weight) * huber + lpips loss = (1 - weight) * huber + lpips
elif self.loss_fn == "lpips_mse":
if not self.lpips:
raise Exception
lpips = self.lpips(
denormalize(x0) * 2 - 1, (denormalize(zt - texp * vtheta) * 2 - 1)
)
loss = ((z1 - x0 - vtheta) ** 2).mean(
dim=list(range(1, len(x0.shape)))
) + 2.0 * lpips
elif self.loss_fn == "lpips_mse_enhanced":
if not self.lpips:
raise Exception
lpips = self.lpips(
denormalize(x0) * 2 - 1, (denormalize(zt - texp * vtheta) * 2 - 1)
)
dino_loss = torch.stack(
[
(
1
- torch.nn.functional.cosine_similarity(
v_residual, x0_residual, dim=-1
)
).mean(dim=-1)
for v_residual, x0_residual in zip(
residual, self.model.get_residual(x0, None, False)
)
]
).mean(dim=0) * (2 - t.view(-1))
loss = (
((z1 - x0 - vtheta) ** 2).mean(dim=list(range(1, len(x0.shape))))
+ 2.0 * lpips
+ dino_loss
)
else: else:
loss = ((z1 - x0 - vtheta) ** 2).mean(dim=list(range(1, len(x0.shape)))) loss = ((z1 - x0 - vtheta) ** 2).mean(dim=list(range(1, len(x0.shape))))
@@ -66,7 +97,7 @@ class RF:
return loss.mean(), ttloss return loss.mean(), ttloss
@torch.no_grad() @torch.no_grad()
def sample(self, z1, sample_steps=50): def sample(self, z1, sample_steps=5):
b = z1.size(0) b = z1.size(0)
dt = 1.0 / sample_steps dt = 1.0 / sample_steps
dt = torch.tensor([dt] * b).to(z1.device).view([b, *([1] * len(z1.shape[1:]))]) dt = torch.tensor([dt] * b).to(z1.device).view([b, *([1] * len(z1.shape[1:]))])
@@ -76,8 +107,36 @@ class RF:
t = i / sample_steps t = i / sample_steps
t = torch.tensor([t] * b).to(z.device) t = torch.tensor([t] * b).to(z.device)
vc = self.model(z, t) vc, _ = self.model(z, t)
z = z - dt * vc z = z - dt * vc
images.append(z) images.append(z)
return images return images
@torch.no_grad()
def sample_heun(self, z1, sample_steps=50):
b = z1.size(0)
dt = 1.0 / sample_steps
images = [z1]
z = z1
for i in range(sample_steps, 0, -1):
t_current = i / sample_steps
t_next = (i - 1) / sample_steps
t_current_tensor = torch.tensor([t_current] * b, device=z.device)
v_current, _ = self.model(z, t_current_tensor)
z_pred = z - dt * v_current
t_next_tensor = torch.tensor([t_next] * b, device=z.device)
v_next, _ = self.model(z_pred, t_next_tensor)
v_avg = 0.5 * (v_current + v_next)
z = z - dt * v_avg
images.append(z)
return images

Binary file not shown.

Before

Width:  |  Height:  |  Size: 325 KiB

After

Width:  |  Height:  |  Size: 396 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 351 KiB

After

Width:  |  Height:  |  Size: 401 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 301 KiB

After

Width:  |  Height:  |  Size: 386 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 305 KiB

After

Width:  |  Height:  |  Size: 379 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 349 KiB

After

Width:  |  Height:  |  Size: 412 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 304 KiB

After

Width:  |  Height:  |  Size: 407 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 371 KiB

After

Width:  |  Height:  |  Size: 440 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 384 KiB

After

Width:  |  Height:  |  Size: 441 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 366 KiB

After

Width:  |  Height:  |  Size: 428 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 315 KiB

After

Width:  |  Height:  |  Size: 386 KiB