fix wrong average of psnr

This commit is contained in:
neulus
2025-10-02 19:40:00 +09:00
parent a601dc6095
commit 6bb6c09638
17 changed files with 221 additions and 39 deletions

View File

@@ -13,17 +13,13 @@ def pseudo_huber_loss(x: torch.Tensor, c=0.00054):
class RF:
def __init__(self, model, ln=False, ushaped=True, loss_fn="lpips_huber"):
def __init__(self, model, ln=False, ushaped=True, loss_fn="lpips_mse_enhanced"):
self.model = model
self.ln = ln
self.ushaped = ushaped
self.loss_fn = loss_fn
self.lpips = (
lpips.LPIPS(net="vgg").to(model.device)
if loss_fn == "lpips_huber"
else None
)
self.lpips = lpips.LPIPS(net="vgg").to("cuda:1") if "lpips" in loss_fn else None
def forward(self, x0, z1):
# x0 is gt / z is noise
@@ -41,7 +37,7 @@ class RF:
texp = t.view([b, *([1] * len(x0.shape[1:]))])
zt = (1 - texp) * x0 + texp * z1
vtheta = self.model(zt, t)
vtheta, residual = self.model(zt, t)
if self.loss_fn == "lpips_huber":
# https://ar5iv.labs.arxiv.org/html/2405.20320v1 / (z - x) - v_θ(x_t, t)
@@ -57,6 +53,41 @@ class RF:
weight = t.view(-1)
loss = (1 - weight) * huber + lpips
elif self.loss_fn == "lpips_mse":
if not self.lpips:
raise Exception
lpips = self.lpips(
denormalize(x0) * 2 - 1, (denormalize(zt - texp * vtheta) * 2 - 1)
)
loss = ((z1 - x0 - vtheta) ** 2).mean(
dim=list(range(1, len(x0.shape)))
) + 2.0 * lpips
elif self.loss_fn == "lpips_mse_enhanced":
if not self.lpips:
raise Exception
lpips = self.lpips(
denormalize(x0) * 2 - 1, (denormalize(zt - texp * vtheta) * 2 - 1)
)
dino_loss = torch.stack(
[
(
1
- torch.nn.functional.cosine_similarity(
v_residual, x0_residual, dim=-1
)
).mean(dim=-1)
for v_residual, x0_residual in zip(
residual, self.model.get_residual(x0, None, False)
)
]
).mean(dim=0) * (2 - t.view(-1))
loss = (
((z1 - x0 - vtheta) ** 2).mean(dim=list(range(1, len(x0.shape))))
+ 2.0 * lpips
+ dino_loss
)
else:
loss = ((z1 - x0 - vtheta) ** 2).mean(dim=list(range(1, len(x0.shape))))
@@ -66,7 +97,7 @@ class RF:
return loss.mean(), ttloss
@torch.no_grad()
def sample(self, z1, sample_steps=50):
def sample(self, z1, sample_steps=5):
b = z1.size(0)
dt = 1.0 / sample_steps
dt = torch.tensor([dt] * b).to(z1.device).view([b, *([1] * len(z1.shape[1:]))])
@@ -76,8 +107,36 @@ class RF:
t = i / sample_steps
t = torch.tensor([t] * b).to(z.device)
vc = self.model(z, t)
vc, _ = self.model(z, t)
z = z - dt * vc
images.append(z)
return images
@torch.no_grad()
def sample_heun(self, z1, sample_steps=50):
b = z1.size(0)
dt = 1.0 / sample_steps
images = [z1]
z = z1
for i in range(sample_steps, 0, -1):
t_current = i / sample_steps
t_next = (i - 1) / sample_steps
t_current_tensor = torch.tensor([t_current] * b, device=z.device)
v_current, _ = self.model(z, t_current_tensor)
z_pred = z - dt * v_current
t_next_tensor = torch.tensor([t_next] * b, device=z.device)
v_next, _ = self.model(z_pred, t_next_tensor)
v_avg = 0.5 * (v_current + v_next)
z = z - dt * v_avg
images.append(z)
return images