fix wrong average of psnr

This commit is contained in:
neulus
2025-10-02 19:40:00 +09:00
parent a601dc6095
commit 6bb6c09638
17 changed files with 221 additions and 39 deletions

View File

@@ -105,10 +105,11 @@ class DinoConditionedLayer(DINOv3ViTLayer):
conditioning_input: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
do_condition: bool = True,
**kwargs,
) -> torch.Tensor:
assert position_embeddings is not None
assert conditioning_input is not None
assert conditioning_input is not None or not do_condition
residual = hidden_states
hidden_states = self.norm1(hidden_states)
@@ -120,13 +121,14 @@ class DinoConditionedLayer(DINOv3ViTLayer):
hidden_states = self.layer_scale1(hidden_states)
hidden_states = self.drop_path(hidden_states) + residual
residual = hidden_states
hidden_states = self.norm_cond(hidden_states)
hidden_states, _ = self.cond(
hidden_states, conditioning_input, conditioning_input
)
hidden_states = self.layer_scale_cond(hidden_states)
hidden_states = self.drop_path(hidden_states) + residual
if do_condition:
residual = hidden_states
hidden_states = self.norm_cond(hidden_states)
hidden_states, _ = self.cond(
hidden_states, conditioning_input, conditioning_input
)
hidden_states = self.layer_scale_cond(hidden_states)
hidden_states = self.drop_path(hidden_states) + residual
residual = hidden_states
hidden_states = self.norm2(hidden_states)
@@ -191,6 +193,8 @@ class DinoV3ViTDecoder(nn.Module):
)
self.pixel_shuffle = nn.PixelShuffle(self.patch_size)
nn.init.zeros_(self.projection.weight)
nn.init.zeros_(self.projection.bias)
def forward(self, x: torch.Tensor, image_size: tuple[int, int]) -> torch.Tensor:
batch_size = x.shape[0]
@@ -211,9 +215,14 @@ class DinoV3ViTDecoder(nn.Module):
class UTransformer(nn.Module):
def __init__(self, config: DINOv3ViTConfig, num_classes: int):
def __init__(
self, config: DINOv3ViTConfig, num_classes: int, scale_factor: int = 4
):
super().__init__()
self.config = config
self.scale_factor = scale_factor
assert config.num_hidden_layers % scale_factor == 0
self.embeddings = DINOv3ViTEmbeddings(config)
self.rope_embeddings = DINOv3ViTRopePositionEmbedding(config)
@@ -228,18 +237,21 @@ class UTransformer(nn.Module):
for _ in range(config.num_hidden_layers)
]
)
self.encoder_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder_layers = nn.ModuleList(
[
DinoConditionedLayer(config, False)
for _ in range(config.num_hidden_layers // 2)
for _ in range(config.num_hidden_layers // scale_factor)
]
)
self.decoder_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = DinoV3ViTDecoder(config)
# freeze pretrained
self.embeddings.requires_grad_(False)
self.rope_embeddings.requires_grad_(False)
self.encoder_norm.requires_grad_(False)
def forward(
self,
@@ -260,7 +272,8 @@ class UTransformer(nn.Module):
residual = []
for i, layer_module in enumerate(self.encoder_layers):
residual.append(x)
if i % self.scale_factor == 0:
residual.append(x)
layer_head_mask = head_mask[i] if head_mask is not None else None
x = layer_module(
x,
@@ -269,35 +282,71 @@ class UTransformer(nn.Module):
position_embeddings=position_embeddings,
)
x = self.encoder_norm(x)
reversed_residual = residual[::-1]
for i, layer_module in enumerate(self.decoder_layers):
layer_head_mask = head_mask[i] if head_mask is not None else None
x = x + residual.pop() + residual.pop()
x = layer_module(
x,
conditioning_input=conditioning_input,
attention_mask=layer_head_mask,
position_embeddings=position_embeddings,
)
x = x + reversed_residual[i]
return self.decoder(x, image_size=pixel_values.shape[-2:])
x = self.decoder_norm(x)
return self.decoder(x, image_size=pixel_values.shape[-2:]), residual
def get_residual(
self,
pixel_values: torch.Tensor,
time: Optional[torch.Tensor],
do_condition: bool,
):
pixel_values = pixel_values.to(self.embeddings.patch_embeddings.weight.dtype)
position_embeddings = self.rope_embeddings(pixel_values)
x = self.embeddings(pixel_values, bool_masked_pos=None)
if do_condition:
t = self.t_embedder(time).unsqueeze(1)
# y = self.y_embedder(cond, self.training).unsqueeze(1)
# conditioning_input = t.to(x.dtype) + y.to(x.dtype)
conditioning_input = t.to(x.dtype)
else:
conditioning_input = None
residual = []
for i, layer_module in enumerate(self.encoder_layers):
if i % self.scale_factor == 0:
residual.append(x)
x = layer_module(
x,
conditioning_input=conditioning_input,
attention_mask=None,
position_embeddings=position_embeddings,
do_condition=do_condition,
)
return residual
@staticmethod
def from_pretrained_backbone(name: str):
config = DINOv3ViTConfig.from_pretrained(name)
instance = UTransformer(config, 0).to("cuda:2")
instance = UTransformer(config, 0).to("cuda:1")
weight_dict = {}
with safe_open(
hf_hub_download(name, "model.safetensors"), framework="pt", device="cuda:2"
hf_hub_download(name, "model.safetensors"), framework="pt", device="cuda:1"
) as f:
for key in f.keys():
new_key = key.replace("layer.", "encoder_layers.").replace(
"norm.", "encoder_norm."
)
if key.startswith("norm."):
continue
weight_dict[new_key] = f.get_tensor(key)
instance.load_state_dict(weight_dict, strict=False)