utransformer
This commit is contained in:
205
src/model/utransformer.py
Normal file
205
src/model/utransformer.py
Normal file
@@ -0,0 +1,205 @@
|
||||
from typing import Optional
|
||||
from torch import nn
|
||||
import torch
|
||||
import math
|
||||
from transformers.models.dinov3_vit.configuration_dinov3_vit import DINOv3ViTConfig
|
||||
|
||||
from src.model.dino import DINOv3ViTEmbeddings, DINOv3ViTLayerScale, DINOv3ViTRopePositionEmbedding, DINOv3ViTLayer
|
||||
|
||||
class TimestepEmbedder(nn.Module):
|
||||
def __init__(self, hidden_size: int, frequency_embedding_size: int=256):
|
||||
super().__init__()
|
||||
self.mlp = nn.Sequential(
|
||||
nn.Linear(frequency_embedding_size, hidden_size),
|
||||
nn.SiLU(),
|
||||
nn.Linear(hidden_size, hidden_size),
|
||||
)
|
||||
self.frequency_embedding_size = frequency_embedding_size
|
||||
|
||||
@staticmethod
|
||||
def timestep_embedding(t, dim, max_period=10000):
|
||||
half = dim // 2
|
||||
freqs = torch.exp(
|
||||
-math.log(max_period) * torch.arange(start=0, end=half) / half
|
||||
).to(t.device)
|
||||
args = t[:, None] * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat(
|
||||
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
||||
)
|
||||
return embedding
|
||||
|
||||
def forward(self, t):
|
||||
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(
|
||||
dtype=next(self.parameters()).dtype
|
||||
)
|
||||
t_emb = self.mlp(t_freq)
|
||||
return t_emb
|
||||
|
||||
|
||||
class LabelEmbedder(nn.Module):
|
||||
def __init__(self, num_classes, hidden_size, dropout_prob):
|
||||
super().__init__()
|
||||
use_cfg_embedding = int(dropout_prob > 0)
|
||||
self.embedding_table = nn.Embedding(
|
||||
num_classes + use_cfg_embedding, hidden_size
|
||||
)
|
||||
self.num_classes = num_classes
|
||||
self.dropout_prob = dropout_prob
|
||||
|
||||
def token_drop(self, labels, force_drop_ids=None):
|
||||
if force_drop_ids is None:
|
||||
drop_ids = torch.rand(labels.shape[0]) < self.dropout_prob
|
||||
drop_ids = drop_ids.cuda()
|
||||
drop_ids = drop_ids.to(labels.device)
|
||||
else:
|
||||
drop_ids = force_drop_ids == 1
|
||||
labels = torch.where(drop_ids, self.num_classes, labels)
|
||||
return labels
|
||||
|
||||
def forward(self, labels, train, force_drop_ids=None):
|
||||
use_dropout = self.dropout_prob > 0
|
||||
if (train and use_dropout) or (force_drop_ids is not None):
|
||||
labels = self.token_drop(labels, force_drop_ids)
|
||||
embeddings = self.embedding_table(labels)
|
||||
return embeddings
|
||||
|
||||
class DinoConditionedLayer(DINOv3ViTLayer):
|
||||
def __init__(self, config: DINOv3ViTConfig, is_encoder: bool = False):
|
||||
super().__init__(config)
|
||||
|
||||
self.norm_cond = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.cond = nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, config.drop_path_rate, batch_first=True)
|
||||
self.layer_scale_cond = DINOv3ViTLayerScale(config)
|
||||
|
||||
# no init zeros!
|
||||
if is_encoder:
|
||||
nn.init.constant_(self.layer_scale_cond.lambda1, 0)
|
||||
self.norm1.requires_grad_(False)
|
||||
self.norm2.requires_grad_(False)
|
||||
self.attention.requires_grad_(False)
|
||||
self.mlp.requires_grad_(False)
|
||||
self.layer_scale1.requires_grad_(False)
|
||||
self.layer_scale2.requires_grad_(False)
|
||||
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, *, conditioning_input: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
|
||||
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, **kwargs) -> torch.Tensor:
|
||||
assert position_embeddings is not None
|
||||
assert conditioning_input is not None
|
||||
|
||||
residual = hidden_states
|
||||
hidden_states = self.norm1(hidden_states)
|
||||
hidden_states, _ = self.attention(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_embeddings=position_embeddings,
|
||||
)
|
||||
hidden_states = self.layer_scale1(hidden_states)
|
||||
hidden_states = self.drop_path(hidden_states) + residual
|
||||
|
||||
residual = hidden_states
|
||||
hidden_states = self.norm_cond(hidden_states)
|
||||
hidden_states, _ = self.cond(hidden_states, conditioning_input, conditioning_input)
|
||||
hidden_states = self.layer_scale_cond(hidden_states)
|
||||
hidden_states = self.drop_path(hidden_states) + residual
|
||||
|
||||
residual = hidden_states
|
||||
hidden_states = self.norm2(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = self.layer_scale2(hidden_states)
|
||||
hidden_states = self.drop_path(hidden_states) + residual
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class DinoV3ViTDecoder(nn.Module):
|
||||
def __init__(self, config: DINOv3ViTConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.num_channels_out = config.num_channels
|
||||
|
||||
self.projection = nn.Linear(
|
||||
config.hidden_size,
|
||||
self.num_channels_out * config.patch_size * config.patch_size,
|
||||
bias=True
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, image_size: tuple[int, int]) -> torch.Tensor:
|
||||
batch_size = x.shape[0]
|
||||
|
||||
num_special_tokens = 1 + self.config.num_register_tokens
|
||||
patch_tokens = x[:, num_special_tokens:, :]
|
||||
|
||||
projected_tokens = self.projection(patch_tokens)
|
||||
|
||||
p = self.config.patch_size
|
||||
c = self.num_channels_out
|
||||
h_grid = image_size[0] // p
|
||||
w_grid = image_size[1] // p
|
||||
|
||||
assert patch_tokens.shape[1] == h_grid * w_grid, "Number of patches does not match image size."
|
||||
|
||||
x_reshaped = projected_tokens.reshape(batch_size, h_grid, w_grid, p, p, c)
|
||||
|
||||
x_permuted = torch.einsum("nhwpqc->nchpwq", x_reshaped)
|
||||
|
||||
reconstructed_image = x_permuted.reshape(batch_size, c, h_grid * p, w_grid * p)
|
||||
|
||||
return reconstructed_image
|
||||
|
||||
class UTransformer(nn.Module):
|
||||
def __init__(self, config: DINOv3ViTConfig, num_classes: int):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
|
||||
self.embeddings = DINOv3ViTEmbeddings(config)
|
||||
self.rope_embeddings = DINOv3ViTRopePositionEmbedding(config)
|
||||
self.t_embedder = TimestepEmbedder(config.hidden_size)
|
||||
self.y_embedder = LabelEmbedder(num_classes, config.hidden_size, config.drop_path_rate)
|
||||
|
||||
self.encoder_layers = nn.ModuleList([DinoConditionedLayer(config, True) for _ in range(config.num_hidden_layers)])
|
||||
self.encoder_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
|
||||
self.decoder_layers = nn.ModuleList([DinoConditionedLayer(config, False) for _ in range(config.num_hidden_layers)])
|
||||
self.decoder = DinoV3ViTDecoder(config)
|
||||
|
||||
# freeze pretrained
|
||||
self.embeddings.requires_grad_(False)
|
||||
self.rope_embeddings.requires_grad_(False)
|
||||
self.encoder_norm.requires_grad_(False)
|
||||
|
||||
def forward(self, pixel_values: torch.Tensor, time: torch.Tensor, cond: torch.Tensor, bool_masked_pos: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None):
|
||||
pixel_values = pixel_values.to(self.embeddings.patch_embeddings.weight.dtype)
|
||||
position_embeddings = self.rope_embeddings(pixel_values)
|
||||
|
||||
x = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
|
||||
t = self.t_embedder(time).unsqueeze(1)
|
||||
y = self.y_embedder(cond, self.training).unsqueeze(1)
|
||||
conditioning_input = t.to(x.dtype) + y.to(x.dtype)
|
||||
|
||||
residual = []
|
||||
for i, layer_module in enumerate(self.encoder_layers):
|
||||
residual.append(x)
|
||||
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||||
x = layer_module(
|
||||
x,
|
||||
conditioning_input=conditioning_input,
|
||||
attention_mask=layer_head_mask,
|
||||
position_embeddings=position_embeddings,
|
||||
)
|
||||
x = self.encoder_norm(x)
|
||||
|
||||
for i, layer_module in enumerate(self.decoder_layers):
|
||||
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||||
x = layer_module(
|
||||
x,
|
||||
conditioning_input=conditioning_input,
|
||||
attention_mask=layer_head_mask,
|
||||
position_embeddings=position_embeddings,
|
||||
)
|
||||
x = x + residual.pop()
|
||||
|
||||
return self.decoder(x, image_size=pixel_values.shape[-2:])
|
||||
Reference in New Issue
Block a user