This commit is contained in:
neulus
2025-09-29 22:51:54 +09:00
parent 02ac62fb1d
commit 12a165e461
38 changed files with 436 additions and 30 deletions

78
main.py
View File

@@ -1,44 +1,25 @@
import os
from typing import cast
import torch
import torch.optim as optim
import wandb
from datasets import DatasetDict, load_dataset
from tqdm import tqdm
from src.dataset.preprocess import make_transform
import wandb
from src.benchmark import benchmark
from src.dataset.cuhk_cr1 import get_dataset
from src.dataset.preprocess import denormalize
from src.model.utransformer import UTransformer
from src.rf import RF
transform = make_transform()
device = "cuda:3"
model = UTransformer.from_pretrained_backbone(
"facebook/dinov3-vits16-pretrain-lvd1689m"
).to("cuda:3")
).to(device)
rf = RF(model)
optimizer = optim.AdamW(model.parameters(), lr=5e-4)
dataset = cast(DatasetDict, load_dataset("your-dataset-name"))
train_dataset = dataset["train"]
def preprocess_function(examples):
x0_list = []
x1_list = []
for x0_img, x1_img in zip(examples["cloudy"], examples["clear"]):
x0_transformed = transform(x0_img)
x1_transformed = transform(x1_img)
x0_list.append(x0_transformed)
x1_list.append(x1_transformed)
return {"x0": x0_list, "x1": x1_list}
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
batch_size=32,
remove_columns=train_dataset.column_names,
)
train_dataset.set_format(type="torch", columns=["x0", "x1"])
train_dataset, test_dataset = get_dataset()
wandb.init(project="cloud-removal-kmu")
@@ -47,7 +28,7 @@ if not (wandb.run and wandb.run.name):
os.makedirs(f"artifact/{wandb.run.name}", exist_ok=True)
batch_size = 16
batch_size = 32
for epoch in range(100):
lossbin = {i: 0 for i in range(10)}
losscnt = {i: 1e-6 for i in range(10)}
@@ -58,8 +39,8 @@ for epoch in range(100):
range(0, len(train_dataset), batch_size), desc=f"Epoch {epoch + 1}/100"
):
batch = train_dataset[i : i + batch_size]
x0 = torch.stack(batch["x0"]).to("cuda:3")
x1 = torch.stack(batch["x1"]).to("cuda:3")
x0 = batch["x0"].to(device)
x1 = batch["x1"].to(device)
optimizer.zero_grad()
loss, blsct = rf.forward(x0, x1)
@@ -77,6 +58,43 @@ for epoch in range(100):
wandb.log(epoch_metrics)
if (epoch + 1) % 10 == 0:
# bench
rf.model.eval()
psnr_sum = 0
ssim_sum = 0
lpips_sum = 0
count = 0
with torch.no_grad():
for i in tqdm(
range(0, len(test_dataset), batch_size),
desc=f"Benchmark {epoch + 1}/100",
):
batch = test_dataset[i : i + batch_size]
images = rf.sample(batch["x0"].to(device))
image = denormalize(images[-1]).clamp(0, 1) * 255
original = denormalize(batch["x1"]).clamp(0, 1) * 255
psnr, ssim, lpips = benchmark(image.cpu(), original.cpu())
psnr_sum += psnr.sum().item()
ssim_sum += ssim.sum().item()
lpips_sum += lpips.sum().item()
count += image.shape[0]
avg_psnr = psnr_sum / count
avg_ssim = ssim_sum / count
avg_lpips = lpips_sum / count
wandb.log(
{
"eval/psnr": avg_psnr,
"eval/ssim": avg_ssim,
"eval/lpips": avg_lpips,
"epoch": epoch + 1,
}
)
rf.model.train()
torch.save(
{
"epoch": epoch,