another approach for final decoder
This commit is contained in:
@@ -41,13 +41,13 @@ with torch.no_grad():
|
||||
batch = test_dataset[i : i + batch_size]
|
||||
images = rf.sample(batch["x0"].to(device))
|
||||
|
||||
image = denormalize(images[-1]).clamp(0, 1) * 255
|
||||
original = denormalize(batch["x1"]).clamp(0, 1) * 255
|
||||
image = denormalize(images[-1]).clamp(0, 1)
|
||||
original = denormalize(batch["x1"]).clamp(0, 1)
|
||||
|
||||
if saved_count < max_save:
|
||||
for j in range(min(image.shape[0], max_save - saved_count)):
|
||||
save_image(image[j] / 255, f"{save_dir}/pred_{saved_count}.png")
|
||||
save_image(original[j] / 255, f"{save_dir}/gt_{saved_count}.png")
|
||||
save_image(image[j], f"{save_dir}/pred_{saved_count}.png")
|
||||
save_image(original[j], f"{save_dir}/gt_{saved_count}.png")
|
||||
save_image(
|
||||
denormalize(batch["x0"][j]).clamp(0, 1),
|
||||
f"{save_dir}/input_{saved_count}.png",
|
||||
|
||||
Reference in New Issue
Block a user