another approach for final decoder
This commit is contained in:
5
main.py
5
main.py
@@ -72,8 +72,8 @@ for epoch in range(100):
|
||||
):
|
||||
batch = test_dataset[i : i + batch_size]
|
||||
images = rf.sample(batch["x0"].to(device))
|
||||
image = denormalize(images[-1]).clamp(0, 1) * 255
|
||||
original = denormalize(batch["x1"]).clamp(0, 1) * 255
|
||||
image = denormalize(images[-1]).clamp(0, 1)
|
||||
original = denormalize(batch["x1"]).clamp(0, 1)
|
||||
|
||||
psnr, ssim, lpips = benchmark(image.cpu(), original.cpu())
|
||||
psnr_sum += psnr.sum().item()
|
||||
@@ -92,7 +92,6 @@ for epoch in range(100):
|
||||
"epoch": epoch + 1,
|
||||
}
|
||||
)
|
||||
|
||||
rf.model.train()
|
||||
|
||||
torch.save(
|
||||
|
||||
Reference in New Issue
Block a user